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The results of a theoretical study of the energy bands and the Fermi surface of thorium cal-
culated by the relativistic-augmented-plane-wave (RAPW) method and of actinium (rigid-band
approximation) are reported. A muffin-tin version of the crystal potential was used and the
exchange was included in the full p‘/ 3 Slater approximation, A set of 36 reciprocal-lattice
vectors was used in the expansion of the wave function, and with this set the energy eigenvalues
were converged to within 0, 003 Ry at the points of high symmetry. The calculated bands were
interpolated by the method of “spline-fits” to obtain the density of states and the Fermi energy.
The Fermi surface consists of three distinct pieces: a hole surface shaped like a rounded
cube centered at T, electron surfaces shaped like pairs of lungs centered on the symmetry
lines T'K, and hole surfaces shaped like dumbbells centered on the symmetry lines 'L, The
de Haas—van Alphen frequencies are determined and the results compared with the existing
experimental data., Assuming a rigid-band model, the present results have been used to pre-
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dict the Fermi surface of actinium,

I. INTRODUCTION

Our understanding of the electronic structure of
metals has greatly increased during the past few
years primarily due to the effort which has been de-
votedto the energy-band calculations and the experi-
ments such as the de Haas-van Alphen (dHvA) ef-
fect, cyclotron resonance, etc., which can be re-
lated directly or indirectly to the geometry of the
Fermi surface. ' From the results of the improved
band calculations and related experiments a uni-
fied picture has emerged of the role played by
conduction electrons, not only in simple metals
but also in complicated metals of the transition
series and even the rare earths. Although there
have been no direct experiments like the dHvA ef-
fect performed to date on rare earths, there are
other evidences which lend strong support to the
existing band calculations on these metals.

The actinide series is generally much more
complicated than the rare-earth series; however,
thorium is probably one of the simplest of the
actinides. The naturally occurring isotope of thorium
has a half-life of 1.39 X 10 years. It is a heavy
element (Z=90) which crystallizes in the face-
centered-cubic (fcc) crystal structure at all tem-
peratures of interest (below ~ 1400 °C). It has a
partially filled d-shell with free-atom configuration
6d? 7s2, similar to the lighter elements Ti, Zr,
and Hf except that they have the hexagonal-close-
packed (hcp) structure. Like fcc lead, thorium
also has four valence electrons but, from our pres-
ent knowledge of the transition and rare-earth
metals, it is hard to expect that the Fermi surface
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of thorium will in any event resemble that of Pb
which is almost free-electron-like. Very recently,
experimental physicists have shown some interest

in the study of actinides and the results of two

dHVA measurements on thorium'-® are now available.
This has greatly enhanced our interest in a theoret-
ical study of the electronic structure of this metal. '

The first theoretical study of the band structure
of thorium was made by Lehman® 10 years ago.
The method he used was similar to the Slater-
Koster interpolation scheme in some respects. It
was a parametrized model based upon Kohn’s vari-
ational principle. Although he included the spin-
orbit interaction, the calculation was limited to
the d bands only. Recently, Keeton and Loucks®
studied the energy bands of thorium by the aug-
mented-plane-wave (APW) method, both with and
without the relativistic effects. As expected, they
concluded that the relativistic effects are large in
thorium and the s band lies below the d bands,
meaning that these two effects must be included in
any calculation of the electronic properties of this
metal.

It was only 2 years ago that the results of the
first experiment on dHvA in thorium were pub-
lished. Thorsen et al.' found that their results
could be interpreted in terms of a model of the
Fermi surface consisting of a nearly spherical
piece at the center of the Brillouin zone and a set
of six closed segments located along [100] axes at
the symmetry points X. Their results could not
be explained on the basis of either the free-elec-
tron model or the two existing band calculations.

It is easy to understand why the free-electron
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3 FERMI SURFACES OF THORIUM AND ACTINIUM 1835
TABLE L. The potential used for thorium 2Z,(r) =—#V() (the factor of 2 arises since e’=2 a.u.).

7 2Z,(r) 7 2Z,(7) 7 2Z,()
0.00020 179.79 0.01005 168.23 0.17378 82.91
0.00032 179.65 0,01168 166.50 0.20190 75.45
0.00043 179.52 0,013 57 164.56 0,23458 68,03
0.00058 179.34 0.01576 162,38 0.272 54 60,72
0.00078 179.09 0,01832 159.95 0.31665 53,62
0.00106 178,76 0.02128 157.25 0,367 89 46,90
0.00143 178.30 0,024 72 154,25 0.427 43 40,69
0.00166 178,01 0,02873 150. 94 0.496 60 35,01
0,00193 177.68 0.03337 147.29 0,576 97 29.90
0.002 24 177.29 0.03878 143,27 0.67034 2531
0.00261 176,85 0, 04505 138. 86 0,778 82 21,14
0.00303 176.33 0,052 34 134.05 0.904 86 17.36
0.00352 175,73 0,06081 128,83 1.05130 14,00
0,004 09 175,03 0,07065 123.23 1.22144 11.09
0.00475 174.24 0,082 09 117.26 1,41911 8.60
0. 00552 173.33 0.09537 110,96 1.64877 6.46
0,00641 172,29 0.,11081 104.34 1.91560 4.58
0.007 45 171.10 0.12874 97.43 2.22561 2.94
0,.00865 169.76 0.14957 90,27 2.58578 1.57

3.004 25 0.53

model is inadequate, thorium being an element with
both s and d electrons. It is also apparent from
Lehman’s article* that he chose not to include the
s band since the primary emphasis was on the
spin-orbit splitting; and one cannot expect com-
plete information on the Fermi surface from such
a calculation. But it is surprising, especially to
those who have witnessed the numerous successful
applications of the APW method to other metals,
that the relativistic -augmented-plane-wave (RAPW)
calculation of Keeton and Loucks® did not provide
useful information-on the Fermi surface of thorium.
The source of error in this particular case was
pointed out by Waber.® He observed in the results
published by Keeton and Loucks that the 5f levels
were in the middle of the conduction band. The
authors had not taken this into account. As a re-
sult the Fermi surface based on these energy
bands was essentially meaningless. In the pres-
sent calculation this has been avoided by modifying
the logarithmic derivative for the f orbitals so
that no singularity exists in the energy range of
interest. Previous experience on the rare earths
indicates that this has little or no effect on the
actual s-d bands. The procedure is justified from
a physical standpoint because the exact position
of the 5f levels is very sensitive to the potential
and to intra-atomic interactions not included in
the energy-band model. Experimental evidence
indicates that the 5f levels are well above the
Fermi energy in thorium.

II. DESCRIPTION OF CALCULATION

The crystal structure of thorium is fcc with the
lattice constant a=9.608 a.u. ”® The crystal po-

tential was constructed using the method suggested
by Mattheiss.® The relativistic self-consistent
calculations of Libermann et al.'® for the free-
atom configuration 64*7s® were used. Exchange
was treated throughout using the Slater p'/® ap-
proximation. The RAPW sphere radius was
R=3.1582 a.u. and the zero of the energy was
chosen such that the potential outside the sphere
was zero. The potential is listed in Table I.

The energy bands were calculated using a basis
set of 36 reciprocal-lattice vectors; these are
listed in Table II. The notation used for these
vectors is

(tmn) = 2r/a)(IT+mj+ nE),

where?, Ti, and k are the unit vectors along the x, y,

TABLE II. Reciprocal-lattice vectors used in RAPW
expansion for all the points in the zone. They are listed
in c_)}*der of importance for the zone as a whole (based
on k=k-Kp.

(0, 0, 0) (1,1,1) (0, 2, 0)
(1,1, 1) (1,1, 1) (1,1, 1)
(2, 0,0) (0, 0, 2). (1,1, 1)
(1,1, 1) (1,1, 1) (1,1, 1)
(2,2, 0) (2, 0,0) (0,2, 0)
(0, 0, 2) (o0, 2, 2) (2,0, 2)
(2, 2, 0) (0, 2,2) (1, 3, 1)
(1,3, 1) (1,3,1) (1, 3, 1)
(3,1, 1) (3,1, 1) (2,0, 2)
(2,2, 2) (1,1, 3) (2, 2, 2)
(2,0, 2) (0,2, 2) (2,0, 2)
(0, 2, 2) (2,2,0) (2, 2,0)




1836 R.P.GUPTA AND T.L.LOUCKS

TABLE III. Energy bands of thorium (Ry).

jeo

4ak/m Band 1 Band 2 Band 3

FIG. 1. Brillouin zone for T (0,0,0) 0.197 0. 645 0. 645

the fcc crystal structure. ,0,0) 0.213 0.633 0.653

2,0,0) 0.256 0.593 0.676

(3,0,0) 0.314 0.544 0.687

(4,0, 0) 0.362 0,497 0.659

(5,0,0) 0,369 0,459 0,688

(6,0, 0) 0.347 0.431 0,768

(7,0,0) 0.325 0.414 0.854

and z-axes, respectively. The eigenvalues at all X (8,0,0 0.317 0. 409 0.899
symmetry points in the Brillouin zone (Fig. 1) (1,1,0 0.228 0.625 0,657
i ; @,1,0) 0.268 0.592 0,673

were converged to within about 0. 003 Ry using (3’ 1’ 0) 0.324 0.548 0. 669
this set of vectors. The sum on k! was truncated @10 0.373 0.505 0.639
at -8 for the negative part of the sum and +7 for (5,1, 0) 0.381 0.469 0. 660
the positive part. This means that orbital sym- (6,1, 0) 0.358 0.442 0.732
metries from /=0 to 7 were included in the calcu- (7,1,0) 0.337 0,426 0.811
lation. (8,1, 0) 0.328 0.422 0. 852
The calculations were carried out on a discrete @,2,0 0.308 0.582 0.668

- mesh within the first Brillouin zone. The whole (3,2,0) 0.353 0.558 0.645
of the Brillouin zone was partitioned into 2048 (4,2,0) 0. 402 0.527 0.602
cubical-volume elements. Because of symmetry (5,2,0) 0.415 0.498 0.603
considerations this involves calculations only for (6,2, 0) 0.392 0.475 0.657
89 points lying within the £ th zone which is ir- g 2’ g; g'ggz g'igz g‘;zg
reducible under symmetry operations. The 89 (3: 3: 0) 0.395 0.562 0.616
points together with the first three energy bands (4,3,0) 0,441 0.554 0.571
are given in Table III. The bands are shown in (5,3, 0) 0.465 0.536 0.548
Fig. 2. (6,3,0) 0. 438 0. 527 0.583
M1 DENSITY OF STATES (7,3,0) 0.412 0.518 0.640

(8,3, 0) 0.403 0.516 0.677

The histogram of the density of states con- 4,4,0) 0.476 0.536 0.584
structed from the calculated bands is shown in (5,4, 0) 0.486 0.516 0.595
Fig. 3. AE was taken to be 0.03 Ry. In order to (6,4,0) 0. 457 0.536 0.598
find the density of states more accurately, the (7,4,0 0.434 0.564 0.601
energy bands were interpolated throughout the W (8,4,0) 0.426 0.577 0.608
Brillouin zone by the method of spline fits, 12 using (5,5,0) 0.447 0.536 0.638
appropriate boundary conditions. The histogram (6,5, 0) 0.421 0.530 0.663
constructed in this way using a mesh of 2048 000 7,5,0 0.407 0.519 0.675
points in the first Brillouin zone is shown in Fig. K (6,6,0) 0.386 0.500 0,718
4. The Fermi energy occurs at 0.595 Ry and the (1,1,1) 0.241 0.618 0.660
density of states at this energy is found to be @,1,1) 0.279 0.592 0.670
(3,1,1) 0.332 0.554 0.661

14. 6 states/Ry atom. The energy of the lowest (4’ 1, b 0.379 0.515 0. 628
state at " is 0.197 Ry. This yields the width of (5: 1: 1) 0.389 0.480 0.645
the conduction band as 0. 398 Ry. 6,1,1) 0.368 0.454 0.711
There are several experimental measurements (7,1,1) 0.347 0.439 0.787
available on the electronic specific heat of thori- (8,1,1) 0.338 0.434 0.825
um. % Clusius and Franzosini!® found the elec- @2,2,1) 0.309 0.587 0.666
tronic specific-heat coefficient y=16.4 X 10* 3,2,1) 0. 352 0.570 0. 645
cal/moledeg®. Using the equation (4,2,1) 0.396 0.543 0.606
(5,2,1) 0.413 0.510 0.607

-4 2 0.396 0.486 0.657

y=0. 828 X 10*N(E) cal/mole deg?, gg ;; 3 P oy P
where N(E) is in states/Ry atom, this value of g’ g 3 g";gz g' :Z; g' Zgi
y corresponds to N(Ez)=19. 8 states/Ry atom. @3 1) 0.419 0. 568 0.596
This would have to be corrected for electron- (5,3, 1) 0. 447 0.525 0. 595
phonon enhancement before a rigorous comparison 6,3,1) 0.438 0.515 0.611

with a “band” density of states could be made, but
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TABLE I (continued) T T T T T T
4al.;/1r Band 1 Band 2 Band 3 mstmrA EO_FO g;mas
(7,3,1) 0.416 0.519 0.648 2800 - THORWUM ]
(8,3,1) 0.407 0.521 0.675 S
(4,4,1) 0,444 0.547 0.621 2 2400 |- M |
(5,4,1) 0.467 0.510 0.633 2
6,4,1) 0.465 0.506 0.629 o
(7,4,1) 0.443 0.539 0.616 w 20.00 [~ -
5,5,1) 0. 447 0.521 0. 657 2
6,5,1) 0.427 0.522 0.659 — 16.00 |- _
2,2,2) 0.326 0.597 0. 6569 ¥
3,2,2) 0.354 0.599 0.643 o 200 |- |
(4,2,2) 0.387 0.575 0.619 =
(5,2,2) 0.412 0.531 0.624 v 800 _
(6,2,2) 0.409 0.508 0.654 S
7,2,2) 0.394 0.502 0.697 g 00 |
g a4
U (8,2,2) 0.386 0.502 0.721 W
(3,3,2) 0.365 0.623 0.637 000 | l l L !
(4, 3,2) 0.387 0.588 0,648 000 010 020 030 040 050 060
(5,3,2) 0.416 0.538 0. 654 ENERGY E (Ry)
(6,3,2) 0,434 0.512 0.656
(7,3,2) 0. 427 0.522 0.660 FIG. 3. Density-of-states curve for thorium. Total
(4, 4,2) 0.399 0,572 0.659 number of points in the Brillouin zone is equal to 2048.
(5,4,2) 0.423 0,534 0,675
6,4,2) 0.457 0. 496 0.667
(5,5,2) 0.429 0.523 0.681 Finnemore'® also estimated the value of ¥ from
3,3,3) 0,359 0.627 0.660 superconductivity measurements. Both got es-
4,3,3) 0.369 0. 606 0. 650 sentially the same result of ¥=10.4 X 10" cal/
(5,3,3) 0.395 0.560 0. 665 moledeg®, The corresponding density of states
(6,3,3) 3'429 8' 2(2)2 ggig is 12.6 states/Ry atom, very close to our theo-
g’i, :;; 0.322 0' 571 0. 653 retical value. This value is much lower than the
P ) ’ ) one observed by Clusius and Franzosini'® but is
L (4,44 0.358 0.613 0.644 only slightly smaller than the value of Smith and
agreement with our value of 14. 6 is nevertheless I T | | T
satisfactory. Smith and Walcott!* had previously DENSITY OF STATES
measured ¥=11.2 X 10™* cal/moledeg®. This THORIUM A€ = 0.0

would give N(E;)=13.5 states/Ry atom. Clusius
and Franzosini'® attribute the disagreement with
the results of Smith and Walcott'* to differences
in the purity of the two samples.

Very recently, Gordon et al.'® and Decker and

24.00 28.00

20.00

16.00
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12.00
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“ o2l
o
S 1 il ] | ]
0.1 T 0.00 0.10 0.20 0.30 0.40 0.50 0.60
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FIG. 4. Density-of-states curve for thorium. Total
FIG. 2. Energy bands of thorium, number of points in the Brillouin zone is equal to 2 048 000
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Walcott. !* The discrepancy has been attributed
to the fact that the techniques used in the earlier
experiments are less reliable.

The magnetic susceptibility has been measured
by Smith and Greiner!? from 130 - 300 °K and was
found to be constant in that range and of magnitude
0.41 X% 10" emu/g. For the purpose of making a
rough comparison, we shall assume that the only

contribution is the paramagnetic spin susceptibility.

Using the equation
x=0.0205 X 10"°N(E;) emu/g ,

we obtain N(Eg)=20 states/Ry atom, which is also
in satisfactory agreement with our value. Since
the measured x also contains diamagnetic contri-
butions which are negative, the paramagnetic part
of the susceptibility will be somewhat larger and
hence, so will the resulting value of N(E).

It must be pointed out that the experimental re-
sults are so much at variance among themselves
that is difficult to draw any firm conclusion about
the density of states in thorium. The latest super-
conductivity data, '® however, would lead to the
conclusion that the electron-phonon interactions
are small in thorium since the experimental den-

FIG. 5. Intersections of the Fermi surface of thorium
with the symmetry planes in the Brillouin zone. The
clectrons are shown dotted and the holes lined.

jeo

DUMBBELL

<>

=
S

HOLE CUBE

FIG. 6., Fermi surface of thorium.

sity of states is almost equal to the “band” den-
sity of states.

IV. FERMI SURFACE

Intersections of the Fermi surface with the sym-
metry planes of the Brillouin zone are shown in
Fig. 5. The Fermi surface is shown in Fig. 6.

It consists of three distinct pieces: a hole surface
at the center of the Brillouin zone shaped like a
rounded cube, electron surfaces on symmetry
lines T'K (110) shaped like pairs of lungs, and the
hole surfaces on the symmetry lines I'L (111)
shaped like dumbbells with triangular ends. The
dHvA frequencies have been calculated on the basis
of this model. The frequencies are related to the
extremal cross-sectional areas by the relation

f=374.1x10°A (G),

T T l T 7T I T T
25.0 |— (100) PLANE
B
20.0
o)
0
2 50
a
>
S 100
] a'
2
(<}
&
L 50
11 I 11 I |
00 B0 300 900 60.0 300 0.0
ANGLE (deg)
[i00] [no] [100]
(a) (b)

FIG. 7. The dHVA frequencies calculated from the
electron surface.
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where A is the area of an extremal orbit in a.u. 2,

The angular dependence of the dHVA frequencies
in the (100) and (110) planes predicted by this
model is shown in Figs. 7 and 8 for the electron
and the hole surfaces, respectively.

The cyclotron effective masses (as a fraction
of the electron rest mass) have also been calcu-
lated for some of the orbits and are listed in Table
IV. The relation

m*/m=0.3183AA/AE

was used, where AA is the change in the extremal
area of an orbit (a.u. %) corresponding to an en-
ergy change AE (Ry).

We first examine the behavior of the extremal
areas generated by the 12 segments of the electron
surface. For a given field direction, each of
these segments will give rise to one or more ex-
tremal areas. The extremal areas produced by
two segments can be the same or different de-
pending upon their orientations with the field. To
obtain the extremal areas arising from all the
segments for a given field direction in a given
plane, we need not study all the segments simul-
taneously. For reasons of symmetry we can al-
ternatively choose a single segment, say the one

||lll'|f

(100) PLANE

1839

TABLE IV. Predicted and observed dHvA frequencies

~ in symmetry directions.

Surface Direction Predicted Observed Predicted ef-
frequency frequency fective mass
(MG) (MG) (m*/m)
Lungs [100] , 8.8 0.40
@y 0.0 0.37
12,0 0.47
@l2,2 11.9 0.59
12,4 0.41
B24.4 22,1 0.55
[110] € 3.8 2,0 0.23
6 11,3 9.6 0,42
7 18.1 0.62
v 20.1 19.9 0.40
[111] ¢ 6.3
011,3 11.7
v2l.4 22,5
Dumbbell [100] A 16.8
u18.0
[110] o 9.4 10.9
p 14,8
T 38.9
[111] £ 6.7 10.9
wl15,9
X 29.7
Rounded [100] 36.5 22,1
cube [110] 41.8 24,8
[111] 41,5 24.8

45.0

400

ROUNDED/CUBE ~T1.

©
©
<]
>
o
2
=]
<]
wl
['4
w
TR R N
00 150 300 900 60.0 30.0 0.0
ANGLE (degq)
[io0] [na] [m] [109
(a) (b)

FIG. 8. The dHvVA frequencies calculated from the

centered along [110], and study the extremal areas
produced by this segment when the field is rotated
in the appropriate set of planes. For example,
the behavior of all 12 surfaces with respect to
the magnetic field in (100) plane will be the same
as the behavior of the surface centered along [110]
with the rotation of the field in the (001) and (100)
planes. Similarly, the behavior of all the 12
surfaces in (110) plane can be obtained by examin-
ing the surface along [110] when the field is ro-
tated in (110), (110), and (011) planes.
Considering the magnetic field in the (001) plane,
we find five extremal areas for [100] direction
which essentially fall into two groups. The group
denoted by « has three extremals which have fre-
quencies around 12 MG(12x10% G). The second
group having two frequencies close together is de-
noted by &’ and falls around 9 MG. The individual
frequencies of these extremals are given in Table
IV. As the direction is changed from [100] toward
[110], the separation between the two frequencies
at o’ increases and the lower frequency finally
ends up as € and the higher one as 6 in the [1_1-0]
direction. Only one of the frequencies at « follows
6, and is shown as 6 in [170] direction. The two
other frequencies disappear. On the other hand,
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if we move toward the [110] direction the frequen-
cies at a’ are not seen and only the one from « is
found to survive. This frequency rises sharply
along 7' and is represented by 7 in [110]. The fre-
quency branches ¢ and « are obtained when the
field is rotated toward [011] in the (100) plane from
the [001] and [010] directions, respectively.

The situation is slightly more complicated for
the (110) plane. In the plane (011), we again get
the group of frequencies « and @’ in [100] direction
as expected. As the field is rotated toward [011],
the two frequencies at a’ follow the path a; and @,
and again two of the frequencies at o disappear and
only one of them is found to trace the route of «,.
The three frequencies a,, @;, and @3 merge in

[011] direction and only one frequency 7 is obtained.

@, and @, cross also in [111] direction and a single
orbit 0 is found. In the (110) plane, the branch
BB’y is followed for a magnetic field rotating from
[001] to the [110] direction. But if the plane (110)
is considered, the frequency § in [001] direction
follows B’ to about 28° as one moves toward [110]
and then splits into two separate frequencies g,
and B, which are shown as & and € in [110]. B,
crosses with 6 and B, with ¢ in [111] direction.

The extremal areas on the hole surfaces are
similarly obtained. There is only one extremal
area for the rounded cube for a given field direc-
tion in (100) or (110) plane. The dumbbell, how-
ever, gives rise to several orbits in any given
direction. If we confine ourselves to the dumbbell
centered along [111], we find two frequencies A
and u in the [001] direction. As one moves away
from [001] toward [101] in the (010) plane, both
the extremals start decreasing but the rate is
larger in the case of \. These extremals are
shown as o and p in the [101] direction. However,
if instead one moves toward [101], then the orbit
udisappears and only X is seen. It increases
rapidly and is denoted by 7 in [101] direction.
Similarly, if the direction of the magnetic field is
changed from | 001] toward | 110] in the (110) plane,
the frequency p approaches slowly toward p and X
decreases until it reaches £ in the [111] direction
and then slowly increases to reach ¢ in the [110]
direction. But if we move from [001] toward [110]
in the (110) plane, the frequency u disappears al-
together and X rises very sharply, and in [110] it
is shown as 7. Yet another possible choice is to
start from [001] toward [110] in the (110) plane in
which case the frequency A rises sharply to a value
of 38 MG at about 25° from [001] and then drops
sharply to the value o in [110].

V. COMPARISON WITH EXPERIMENT

As already pointed out, there are two sets of
experimental data'~% with which correlation of our

Fermi-surface results is possible. The crystal
used by Thorsen et al.' was of relatively poor
quality, and a great difficulty was experienced in
resolving various frequency branches in their ex-
periment. It was therefore difficult for them to
provide a unique interpretation of their results.
The sample used by Boyle and Gold®® was of much
higher purity, and they also used a considerably
improved experimental technique. An important
feature of their results is that they were able to
resolve their data into distinct frequency branches.
Broadly speaking, most of their data also fall into
two relatively narrow bands of 9. 5-14 and 19-25
MG, as found earlier by Thorsen et al.; in addi-
tion, a low-frequency branch ~ 2. 5 MG was also
detected. We shall compare our model with the
data of Boyle and Gold which are more extensive
than those of Thorsen et al. Their results are
shown in Fig. 9.

We shall first compare the results in the (110)
plane. We notice that the variation in the fre-
quency of the branch F; from the experiment is
very small for small values of the angle 8 (mea-
sured from [110])but for large angles F,increases
rapidly. This behavior is well represented by the
frequency branch B, | Fig. 7(b)] obtained from the
electron surface. B, shows little variation for
small angles but increases sharply for 6>35°.

It has a frequency of the order of 10 MG in the
[110] direction and goes to about 14 MG at 50° from
[110], a variation observed with F,. We therefore
associate F, with 8;,. The branch F, exhibits a
minimum at [111] and increases faster than the in-
verse of the cosine of the angle from [111]. This
suggests that this branch originates because of
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FIG. 9. The dHVA frequencies observed by Boyle and
Gold experimentally.
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the dumbbell-shaped portion of the Fermi surface.
We therefore identify Fy with the frequency branch
o' [Fig. 8(b)] from our calculation.

The frequency branch F, decreases slowly in
magnitude as one moves away from [110] and is
then seen to split into two components, F3; and F,,
at about 42° from [110]. Near [100], the lower
branch F; is nearly flat while F, increases in
frequency as it approaches [100]. This behavior
of F,, F3, and F,is predicted by @, and a3 on
the electron surface [Fig. 7(b)]. From |[110] to
|111], a4 can be identified with F, and thereafter
F3 and F4 can be identified with a3 and @,;, re-
spectively. The behavior of the branch Fy is very
much the same as is found with 8’/ [ Fig. 7(b)].

The angular variation of the frequency of the
branch Fy shows that Fy is obviously due to the
rounded cube located at the center of the Brillouin
zone. The calculated frequencies from this piece
of the Fermi surface are, however, about 50%
higher than those observed. This suggests that
the dimensions of the rounded cube be reduced to
about 3 of the present size.

In the (100) plane, the most striking feature of
the experimental data is that the three branches
Fy3, Fy4, and F; meet in [100] direction. This
character is predicted by our model also where
Y', k, and 6, [Fig. 7(a)] arising from the electron
surface meet in « in the [100] direction. @, how-
ever, represents a group of three frequencies very
close together, as already pointed out, but the
separation is too small to be detected experi-
mentally. Also, F;and Fy meet at [110]; so do
5, and 65 at 6 in [110]. We therefore conclude that
the branches Fy3, Fy4, F5, and F4 arise from the
geometry of the electron surface and can be as-
sociated with 7, k, 8, and §,, respectively, cal-
culated from our model. The frequency branch
Fg is assigned to p' [Fig. 8(a)] which shows the
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FIG. 10. Triangular prism in reciprocal space.

FIG. 11, Intersections of the Fermi surface of actinium
with the planes of the triangular prism shown in Fig. 10,

same behavior but has lower frequencies. We
could not find any proper assignment for Fg'in
terms of our model. Fy is again obviously due to
the rounded hole cube at the center of the zone.

The experimental points represented by Fy; in
(100) and (110) planes can not be associated with
any particular branch from the theory. Nonethe-
less, our model also predicts the existence of
some lower frequency branches both in (100) and -
(110) planes. A numerical comparison between
the predicted and the observed results is shown
in Table IV.

VI. FERMI SURFACE OF ACTINIUM

We have also calculated the Fermi surface of
actinium (647s%) in the rigid-band approximation.
The Fermi energy for actinium was found to be
0.525 Ry. The density of states for this value of
E; (Fig. 4) is 22.6 states/Ryatom which gives
the electronic specific~-heat coefficient

K

FIG, 12, Model of the Fermi surface of actinium,
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y=18.7%X10™* cal/mole deg®.

In order to find out the intersections of the
Fermi surface, a triangular prism of height 7/a
was chosen in reciprocal space, as shown in Fig.
10. The base of the prism was an isosceles right-
angle triangle with its equal sides equal to 27/a,
The volume of the prism was thus one-eighth of
the Brillouin zone. The entire prism was divided

into 11 equally distant layers, as shown in Fig. 10.

The intersections of the Fermi surface with each
of these layers are shown in Fig. 11, and a model
of the Fermi surface is shown in Fig. 12. It is
found to be a multiply connected surface. We are
not aware of any experimental data on this metal
with which the interpretation of these results is
possible. Nevertheless, these results are in
agreement with the recent calculation of Myron
and Liu'® for fcc La and Pr which have the same
outer electron configuration as Ac.

VII. CONCLUSION

We wish to point out that our model is only in

|

qualitative agreement with the experimental re-
sults of Boyle and Gold. %% In general, the orbits
derived from the electron surface yield frequencies
which show reasonable quantitative agreement, but
the frequencies from the dumbbell are smaller
and the rounded cube larger than those observed.
The discrepancy could be removed by scaling the
entire hole surface to fit the experimental data.
The results of our study, though only in qualitative
agreement with experiment, are quite important
because we now know that the lighter actinides
which do not have 5f bands near the Fermi energy
are similar to the transition metals and can be
described by the same hybridized s-d energy band
model.!®
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